Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(12): 14503-14509, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38499046

RESUMEN

The activation of proinflammatory M1-type macrophages in the injured lesion accelerates the progression of a spinal cord injury (SCI). However, adverse side effects during systemic treatments targeting M1 macrophages have limited their applications. Nanoplatforms are novel carriers of traditional Chinese medicine because of their great efficiency to deliver and accumulation in the lesion. Herein, we synthesized a modified zeolitic imidazolate framework-8 (ZIF-8) nanoplatform for internalization and accumulation in the injured spinal cord and effective administration for SCI. In vitro and in vivo experiments suggested that Prussian blue and Schisandrin B modified ZIF-8 effectively accumulated in M1 macrophages, inhibited reactive oxygen species (ROS), and polarized the macrophage from proinflammatory M1 to anti-inflammatory M2 for rapid tissue infiltration by reprogramming the metabolic macrophages phenotype. This nanoplatform achieves a synergistic therapeutic effect of immunomodulation and neuroprotection, thereby shedding new light on the application of ZIF-8, and provides great potential for SCI.


Asunto(s)
Nanopartículas , Traumatismos de la Médula Espinal , Zeolitas , Humanos , Zeolitas/farmacología , Macrófagos , Traumatismos de la Médula Espinal/metabolismo , Antiinflamatorios/uso terapéutico
2.
Mol Neurobiol ; 61(2): 635-645, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37650966

RESUMEN

The aim of this work was to investigate the effects of electroacupuncture (EA) stimulation on the proliferation and differentiation of endogenous neural stem cells (NSCs) in rats with spinal cord injury (SCI). One hundred rats were included and randomly divided into the sham-operation (SO) group, model (MO) group, EA group, and preacupuncture stimulation (PAS) group, with 25 rats in each group. All the rats in the SO group had their spinal cord of thoracic segment T10 exposed but without SCI. In the remaining three groups, the modified Allen's weight dropping method was adopted to make SCI models. Those in the SO group and the MO group did not receive any treatment. Those in the EA group were treated with EA after the modelling was completed, which stopped when the samples were collected at each time point. The spinal cord tissue of rats was subjected to immunohistochemical staining and real-time quantitative polymerase chain reaction (PCR) to detect the expressions of neurofilament nestin and glial fibrillary acidic protein (GFAP). The Basso-Beattie-Bresnahan (BBB) score of the MO group was much lower than that of the SO group on the 3rd, 7th, and 14th days after surgery (P < 0.05). The BBB scores of the EA group and PAS group were notably higher than that of the MO group (P < 0.05). The number of nestin-, GFAP-, and MAP-2-positive cells was significantly increased in rat tissues after spinal cord injury. On the 3rd, 7th, and 14th days postoperatively, the numbers of nestin-positive cells in the EA and PAS groups were considerably higher than those in the MO group (P < 0.01). However, the numbers of GFAP-positive cells in the EA and PAS groups were considerably decreased compared with those in the MO group (P < 0.01). The positive rate of MAP-2 in the model group was significantly increased compared to that in the sham-operation group (P < 0.001). The positive rates of MAP-2 in the EA group and PAS group were significantly higher than those in the MO group (P < 0.01). After spinal cord injury, EA could activate the proliferation of endogenous NSCs and promote their differentiation into neuronal cells. Consequently, injuries were repaired, and functions were rehabilitated.


Asunto(s)
Electroacupuntura , Células-Madre Neurales , Traumatismos de la Médula Espinal , Ratas , Animales , Ratas Sprague-Dawley , Nestina , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Células-Madre Neurales/metabolismo , Proliferación Celular
3.
J Neuroinflammation ; 20(1): 303, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38110993

RESUMEN

Acute hyperbaric O2 (HBO) therapy after spinal cord injury (SCI) can reduce inflammation and increase neuronal survival. To our knowledge, it is unknown if these benefits of HBO require hyperbaric vs. normobaric hyperoxia. We used a C4 lateralized contusion SCI in adult male and female rats to test the hypothesis that the combination of hyperbaria and 100% O2 (i.e. HBO) more effectively mitigates spinal inflammation and neuronal loss, and enhances respiratory recovery, as compared to normobaric 100% O2. Experimental groups included spinal intact, SCI no O2 therapy, and SCI + 100% O2 delivered at normobaric pressure (1 atmosphere, ATA), or at 2- or 3 ATA. O2 treatments lasted 1-h, commenced within 2-h of SCI, and were repeated for 10 days. The spinal inflammatory response was assessed with transcriptomics (RNAseq) and immunohistochemistry. Gene co-expression network analysis showed that the strong inflammatory response to SCI was dramatically diminished by both hyper- and normobaric O2 therapy. Similarly, both HBO and normobaric O2 treatments reduced the prevalence of immunohistological markers for astrocytes (glial fibrillary acidic protein) and microglia (ionized calcium binding adaptor molecule) in the injured spinal cord. However, HBO treatment also had unique impacts not detected in the normobaric group including upregulation of an anti-inflammatory cytokine (interleukin-4) in the plasma, and larger inspiratory tidal volumes at 10-days (whole body-plethysmography measurements). We conclude that normobaric O2 treatment can reduce the spinal inflammatory response after SCI, but pressured O2 (i.e., HBO) provides further benefit.


Asunto(s)
Oxigenoterapia Hiperbárica , Traumatismos de la Médula Espinal , Ratas , Masculino , Femenino , Animales , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/patología , Inflamación/metabolismo , Oxígeno/metabolismo
4.
Photochem Photobiol Sci ; 22(11): 2527-2540, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37787959

RESUMEN

BACKGROUND: Photobiomodulation therapy (PBMT), due to its anti-inflammatory, analgesic effects, and most importantly as a non-invasive procedure, has currently gained a special setting in pain relief and the treatment of Spinal cord injuries (SCI). However, the mechanism of action of the PBM is not yet completely understood. METHODS: In this study, SCI is induced by an aneurysm clip, and PBM therapy was applied by a continuous-wave (CW) laser with a wavelength of 660 nm. Adult male rats were divided into four groups: Control, SCI, SCI + PBMT 90s, and SCI + PBMT 117s. After 7 weeks, hyperalgesia, allodynia, and functional recovery were assessed. Fibroblasts infiltrating the spinal cord were counted after H&E staining. The expression of epigenetic factors (HDAC2, DNMT3a), protein relevant for pain (GAD65), and astrocytes marker (GFAP) after 4 weeks of daily PBMT (90 and 117s) was probed by western blotting. RESULTS: Both PBMTs (90 and 117s) significantly improved the pain and ability to move and fibroblast invasion was reduced. SCI + PBMT 90s, increased GAD65, HDAC2, and DNMT3a expression. However, PBMT 117s decreased GFAP, HDAC2, and DNMT3a. CONCLUSION: PBMT 90 and 117s improved the pain, and functional recovery equally. The regulation of epigenetic mechanisms appears to be a significant effect of PBMT117s, which emphasizes on impact of radiation duration and accumulative energy.


Asunto(s)
Terapia por Luz de Baja Intensidad , Neuralgia , Traumatismos de la Médula Espinal , Ratas , Masculino , Animales , Terapia por Luz de Baja Intensidad/métodos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Hiperalgesia , Antiinflamatorios no Esteroideos/uso terapéutico , Epigénesis Genética
5.
ACS Biomater Sci Eng ; 9(10): 5709-5723, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37713674

RESUMEN

Spinal cord injury is an impact-induced disabling condition. A series of pathological changes after spinal cord injury (SCI) are usually associated with oxidative stress, inflammation, and apoptosis. These pathological changes eventually lead to paralysis. The short half-life and low bioavailability of many drugs also limit the use of many drugs in SCI. In this study, we designed nanovesicles derived from macrophages encapsulating selenium nanoparticles (SeNPs) and metformin (SeNPs-Met-MVs) to be used in the treatment of SCI. These nanovesicles can cross the blood-spinal cord barrier (BSCB) and deliver SeNPs and Met to the site of injury to exert anti-inflammatory and reactive oxygen species scavenging effects. Transmission electron microscopy (TEM) images showed that the SeNPs-Met-MVs particle size was approximately 125 ± 5 nm. Drug release assays showed that Met exhibited sustained release after encapsulation by the macrophage cell membrane. The cumulative release was approximately 80% over 36 h. In vitro cellular experiments and in vivo animal experiments demonstrated that SeNPs-Met-MVs decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, and reduced the expression of inflammatory (TNF-α, IL-1ß, and IL-6) and apoptotic (cleaved caspase-3) cytokines in spinal cord tissue after SCI. In addition, motor function in mice was significantly improved after SeNPs-Met-MVs treatment. Therefore, SeNPs-Met-MVs have a promising future in the treatment of SCI.


Asunto(s)
Metformina , Nanopartículas , Selenio , Traumatismos de la Médula Espinal , Ratones , Animales , Selenio/farmacología , Selenio/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Membrana Celular/metabolismo , Membrana Celular/patología
6.
Spine (Phila Pa 1976) ; 48(22): 1553-1560, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678378

RESUMEN

STUDY DESIGN: Basic science study investigating the potential molecular mechanisms of hyperbaric oxygen (HBO) therapy in mice with spinal cord injury (SCI). OBJECTIVE: We aimed to explore the intrinsic mechanisms of HBO for SCI through the lens of ferroptosis in the subacute phase. SUMMARY OF BACKGROUND DATA: HBO has been observed to facilitate the restoration of neurological function subsequent to SCI. Ferroptosis is a distinct cellular death mechanism that can be distinguished from apoptosis, necrosis, and autophagy. However, the precise relationship between these two phenomena remains poorly understood. METHODS: We established an SCI model and employed a range of techniques, including behavioral assessments, electron microscopy, immunofluorescence, RT-qPCR, Western blotting (WB), Glutathione (GSH) measurement, and iron assay, to investigate various aspects of HBO therapy on SCI in mice. These included analyzing mitochondrial morphology, neuronal count, GSH levels, iron levels, and the expression of genes (Acyl-CoA synthetase family member-2, Iron-responsive element-binding protein-2) and proteins (Glutathione peroxidase 4; system Xc-light chain) associated with ferroptosis. The study included three groups: Sham-operated, SCI, and HBO. Group comparisons were performed using one-way analysis of variance and one-way repeated measures analysis of variance, followed by Tukey's post hoc test. Statistical significance was set at a P < 0.05. RESULTS: Our findings revealed that HBO therapy significantly enhanced the recovery of lower limb motor function in mice following SCI in the subacute phase. This was accompanied by upregulated expression of GPX4 and system Xc-light chain proteins, elevated GSH levels, increased number of NeuN+ cells, decreased expression of the iron-responsive element-binding protein-2 gene, and reduced iron concentration. CONCLUSIONS: Our research suggests that HBO therapy has the potential to be an effective treatment for SCI in the subacute phase by mitigating ferroptosis.


Asunto(s)
Ferroptosis , Oxigenoterapia Hiperbárica , Traumatismos de la Médula Espinal , Ratas , Ratones , Animales , Oxigenoterapia Hiperbárica/métodos , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Hierro/metabolismo , Médula Espinal
7.
Immun Inflamm Dis ; 11(7): e933, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37506135

RESUMEN

BACKGROUND: The incidence rate of spinal cord injury (SCI) is increasing, and the mortality or disability rate caused by SCI remains high in the world. Buyang Huanwu Decoction (BYHWD) is a kind of Traditional Chinese medicine, and it is believed to be effective in several kinds of nervous system diseases. Whether BYHWD could improve SCI and the potential function mechanism remain unclear. METHODS: SCI animal model was established by damaging T10 spinal cord. Animals experiments included five groups as follows: Sham, SCI, SCI+BYHWD, SCI+mesenchymal stromal cells (MSCs), and SCI+BYHWD+MSCs. H2 O2 -treated cells (100 µM, 6 h) were used to simulate SCI damage in vitro, which included five groups as follows: control, H2 O2 , H2 O2 +BYHWD, H2 O2 +MSCs, and H2 O2 +BYHWD+MSCs. The behavioral function was evaluated with Tarlov and inclined plated test score. Western blot analysis and immunohistochemical staining were used to detect protein expression. The levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA), interleukin (IL)-1ß, tumor necrosis factor-α, and IL-6 in serum were measured with commercial enzyme-linked immunosorbent assay kits. terminal deoxynucleotidyl transferase dUTP nick end labeling staining and flow cytometry were performed to measure apoptosis in vivo and in vitro levels. Gene expression profiling analysis was performed to analyze differential expression genes. RESULTS: BYHWD suppressed apoptosis and accelerating cell proliferation after SCI. Recovery of neurofunction, inhibition of inflammatory response, and oxidative condition were achieved by BYHWD and MSCs. The expression levels of gp130/Janus kinase/signal transducers and activator of transcription (JAK/STAT) were suppressed by BYHWD and MSCs, both in vivo and in vitro. BYHWD and MSCs markedly promoted cells viability and inhibited apoptosis. Greater gene expression difference was observed between group control and H2 O2 through gene expression profiling analysis. The recovery effects of traumatic SCI by BYHWD were similar to MSCs, and synergies effects were observed in several items. CONCLUSION: BYHWD could increase Tarlov score and Basso, Beatie, and Bresnahan functional score, inhibit apoptosis, inflammatory response, and oxidative condition after SCI. The expression level of gp130/JAK/STAT axis was suppressed by BYHWD. BYHWD might be a new therapeutic strategy for the prevention or treatment of SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Animales , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Apoptosis , Estrés Oxidativo , Inflamación/tratamiento farmacológico
8.
Neuroscience ; 527: 52-63, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499782

RESUMEN

Spinal cord injury (SCI) following trauma is a devastating neurological event that can lead to loss of sensory and motor functions. However, the most effective measures to prevent the spread of damage are treatment measures in the early stages. Currently, we investigated the combined effects of hyperbaric oxygen (HBO) along with epigallocatechin-3-gallate (EGCG) in the recovery of SCI in rats. Ninety male mature Sprague-Dawley rats were randomly planned into five equal groups (n = 18). In addition to sham group that only underwent laminectomy, SCI rats were allocated into 4 groups as follows: control group; HBO group; EGCG group; and HBO + EGCG group. Tissue samples at the lesion site were obtained for stereological, immunohistochemical, biochemical, and molecular evaluation. In addition, behavioral tests were performed to assess of neurological functions. The finding indicated that the stereological parameters, antioxidant factors (CAT, GSH, and SOD), IL-10 gene expression levels and neurological functions were considerably increased in the treatment groups in comparison with control group, and these changes were more obvious in the HBO + EGCG group (P < 0.05). On the other hand, we observed that the density of apoptotic cells and gliosis, the biochemical levels of MDA and the expression levels of inflammatory genes (TNF-α and IL-1ß) in the treatment groups, especially the HBO + EGCG group, were considerably reduced in comparison with control group (P < 0.05). We conclude that co-administration of HBO and EGCG has a synergistic neuroprotective effects in animals undergoing SCI.


Asunto(s)
Oxigenoterapia Hiperbárica , Traumatismos de la Médula Espinal , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Oxígeno/metabolismo
9.
J Orthop Surg Res ; 18(1): 419, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296436

RESUMEN

BACKGROUND: Spinal cord injury (SCI), which reportedly induces severe motor dysfunction, imposes a significant social and financial burden on affected individuals, families, communities, and nations. Acupuncture combined with moxibustion (AM) therapy has been widely used for motor dysfunction treatment, but the underlying mechanisms remain unknown. In this work, we aimed to determine whether AM therapy could alleviate motor impairment post-SCI and, if so, the potential mechanism. METHODS: A SCI model was established in mice through impact methods. AM treatment was performed in SCI model mice at Dazhui (GV14) and Jiaji points (T7-T12), Mingmen (GV4), Zusanli (ST36), and Ciliao (BL32) on both sides for 30 min once per day for 28 days. The Basso-Beattie-Bresnahan score was used to assess motor function in mice. A series of experiments including astrocytes activation detected by immunofluorescence, the roles of NOD-like receptor pyrin domain-containing-3 (NLRP3)-IL-18 signaling pathway with the application of astrocyte-specific NLRP3 knockout mice, and western blot were performed to explore the specific mechanism of AM treatment in SCI. RESULTS: Our data indicated that mice with SCI exposure exhibited motor dysfunction, a significant decrease of neuronal cells, a remarkable activation of astrocytes and microglia, an increase of IL-6, TNF-α, IL-18 expression, and an elevation of IL-18 colocalized with astrocytes, while astrocytes-specific NLRP3 knockout heavily reversed these changes. Besides, AM treatment simulated the neuroprotective effects of astrocyte-specific NLRP3 knockout, whereas an activator of NLRP3 nigericin partially reversed the AM neuroprotective effects. CONCLUSION: AM treatment mitigates SCI-induced motor dysfunction in mice; this protective mechanism may be related to the NLRP3-IL18 signaling pathway inhibition in astrocytes.


Asunto(s)
Terapia por Acupuntura , Moxibustión , Fármacos Neuroprotectores , Traumatismos de la Médula Espinal , Ratas , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR , Interleucina-18 , Ratas Sprague-Dawley , Fármacos Neuroprotectores/farmacología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Transducción de Señal
10.
Theranostics ; 13(8): 2531-2551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215570

RESUMEN

Prolonged inflammation after spinal cord injury is detrimental to recovery. To find pharmacological modulators of the inflammation response, we designed a rapid drug screening paradigm in larval zebrafish followed by testing of hit compounds in a mouse spinal cord injury model. Methods: We used reduced il-1ß linked green fluorescent protein (GFP) reporter gene expression as a read-out for reduced inflammation in a screen of 1081 compounds in larval zebrafish. Hit drugs were tested in a moderate contusion model in mice for cytokine regulation, and improved tissue preservation and locomotor recovery. Results: Three compounds robustly reduced il-1ß expression in zebrafish. Cimetidine, an over-the-counter H2 receptor antagonist, also reduced the number of pro-inflammatory neutrophils and rescued recovery after injury in a zebrafish mutant with prolonged inflammation. Cimetidine action on il-1ß expression levels was abolished by somatic mutation of H2 receptor hrh2b, suggesting specific action. In mice, systemic treatment with Cimetidine led to significantly improved recovery of locomotor behavior as compared to controls, accompanied by decreased neuronal tissue loss and a shift towards a pro-regenerative profile of cytokine gene expression. Conclusion: Our screen revealed H2 receptor signaling as a promising target for future therapeutic interventions in spinal cord injury. This work highlights the usefulness of the zebrafish model for rapid screening of drug libraries to identify therapeutics to treat mammalian spinal cord injury.


Asunto(s)
Traumatismos de la Médula Espinal , Pez Cebra , Ratones , Animales , Pez Cebra/metabolismo , Cimetidina/farmacología , Cimetidina/metabolismo , Cimetidina/uso terapéutico , Larva , Evaluación Preclínica de Medicamentos , Traumatismos de la Médula Espinal/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/complicaciones , Citocinas/metabolismo , Mamíferos
11.
Biomed Pharmacother ; 163: 114905, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37207430

RESUMEN

Spinal cord injury (SCI) is a disease in which the spinal cord is subjected to various external forces that cause it to burst, shift, or, in severe cases, injure the spinal tissue, resulting in nerve injury. SCI includes not only acute primary injury but also delayed and persistent spinal tissue injury (i.e., secondary injury). The pathological changes post-SCI are complex, and effective clinical treatment strategies are lacking. The mammalian target of rapamycin (mTOR) coordinates the growth and metabolism of eukaryotic cells in response to various nutrients and growth factors. The mTOR signaling pathway has multiple roles in the pathogenesis of SCI. There is evidence for the beneficial effects of natural compounds and nutraceuticals that regulate the mTOR signaling pathways in a variety of diseases. Therefore, the effects of natural compounds on the pathogenesis of SCI were evaluated by a comprehensive review using electronic databases, such as PubMed, Web of Science, Scopus, and Medline, combined with our expertise in neuropathology. In particular, we reviewed the pathogenesis of SCI, including the importance of secondary nerve injury after the primary mechanical injury, the roles of the mTOR signaling pathways, and the beneficial effects and mechanisms of natural compounds that regulate the mTOR signaling pathway on pathological changes post-SCI, including effects on inflammation, neuronal apoptosis, autophagy, nerve regeneration, and other pathways. This recent research highlights the value of natural compounds in regulating the mTOR pathway, providing a basis for developing novel therapeutic strategies for SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Animales , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Suplementos Dietéticos , Mamíferos , Transducción de Señal , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
12.
Life Sci ; 325: 121738, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37121541

RESUMEN

AIMS: Nerve growth factor (NGF) has been implicated as a key molecule of pathology-induced changes in C-fiber afferent nerve excitability, which contributes to the emergence of neurogenic detrusor overactivity due to spinal cord injury (SCI). It is also known that the second messenger signaling pathways activated by NGF utilize p38 Mitogen-Activated Protein Kinase (MAPK). We examined the roles of p38 MAPK on electrophysiological properties of capsaicin sensitive bladder afferent neurons with SCI mice. MAIN METHODS: We used female C57BL/6 mice and transected their spinal cord at the Th8/9 level. Two weeks later, continuous administration of p38 MAPK inhibitor (0.51 µg/h, i.t. for two weeks) was started. Bladder afferent neurons were labelled with a fluorescent retrograde tracer, Fast-Blue (FB), injected into the bladder wall three weeks after SCI. Four weeks after SCI, freshly dissociated L6-S1 dorsal root ganglion neurons were prepared and whole cell patch clamp recordings were performed in FB-labelled neurons. After recording action potentials or voltage-gated K+ currents, the sensitivity of each neuron to capsaicin was evaluated. KEY FINDINGS: In capsaicin-sensitive FB-labelled neurons, SCI significantly reduced the spike threshold and increased the number of action potentials during 800 ms membrane depolarization. Densities of slow-decaying A-type K+ (KA) and sustained delayed rectifier-type K+ (KDR) currents were significantly reduced by SCI. The reduction of KA, but not KDR, current density was reversed by the treatment with p38 MAPK inhibitor. SIGNIFICANCE: P38 MAPK plays an important role in hyperexcitability of capsaicin-sensitive bladder afferent neurons due to the reduction in KA channel activity in SCI mice.


Asunto(s)
Traumatismos de la Médula Espinal , Vejiga Urinaria , Ratones , Femenino , Animales , Vejiga Urinaria/metabolismo , Capsaicina/farmacología , Capsaicina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Ratones Endogámicos C57BL , Neuronas Aferentes , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Ganglios Espinales
13.
Pflugers Arch ; 475(5): 621-635, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36869900

RESUMEN

Aging is associated with muscle atrophy, and erosion and destruction of neuronal pathways in the spinal cord. The study aim was to assess the effect of swimming training (Sw) and L-arginine loaded chitosan nanoparticles (LA-CNPs) on the sensory and motor neuron population, autophagy marker LC3, total oxidant status/total antioxidant capacity, behavioural test, GABA and BDNF-TrkB pathway in the spinal cord of aging rats. The rats were randomized to five groups: young (8-weeks) control (n = 7), old control (n = 7), old Sw (n = 7), old LA-CNPs (n = 7) and old Sw + LA-CNPs (n = 7). Groups under LA-CNPs supplementation received 500 mg/kg/day. Sw groups performed a swimming exercise programme 5 days per week for 6 weeks. Upon the completion of the interventions the rats were euthanized and the spinal cord was fixed and frozen for histological assessment, IHC, and gene expression analysis. The old group had more atrophy in the spinal cord with higher changes in LC3 as an indicator of autophagy in the spinal cord compared to the young group (p < 0.0001). The old Sw + LA-CNPs group increased (improved) spinal cord GABA (p = 0.0187), BDNF (p = 0.0003), TrkB (p < 0.0001) gene expression, decreased autophagy marker LC3 protein (p < 0.0001), nerve atrophy and jumping/licking latency (p < 0.0001), improved sciatic functional index score and total oxidant status/total antioxidant capacity compared to the old group (p < 0.0001). In conclusion, swimming and LA-CNPs seems to ameliorate aging-induced neuron atrophy, autophagy marker LC3, oxidant-antioxidant status, functional restoration, GABA and BDNF-TrkB pathway in the spinal cord of aging rats. Our study provides experimental evidence for a possible positive role of swimming and L-arginine loaded chitosan nanoparticles to decrease complications of aging.


Asunto(s)
Quitosano , Traumatismos de la Médula Espinal , Animales , Ratas , Antioxidantes/metabolismo , Arginina/metabolismo , Atrofia/metabolismo , Atrofia/patología , Autofagia , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Quitosano/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas Motoras/patología , Ratas Sprague-Dawley , Médula Espinal , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Natación
14.
Immunol Invest ; 52(4): 399-414, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36975047

RESUMEN

Zhenbao Pill contains many Chinese herbal medicinal ingredients and has been proven to have therapeutic effects on the repair of spinal cord injury (SCI). This study attempts to investigate the role of formononetin (FMN), an ingredient of Zhenbao Pill, in regulating neuroinflammation after SCI and the underlying mechanism. Primary microglia isolated from the spinal cord of newborn rats and human microglial clone 3 (HMC3) cells were stimulated with IL-1ß followed by FMN incubation. The cell viability and inflammatory cytokine levels were detected. The target of FMN was predicted and screened using databases. By silencing or overexpression of epidermal growth factor receptor (EGFR), the anti-neuroinflammatory effect of FMN was assessed in vitro. In vivo, FMN was intraperitoneally injected into rats after SCI followed by the neurological function and histopathology examination. The isolated microglia were in high purity, and the different concentrations of FMN incubation had no toxic effects on primary microglia and HMC3 cells. FMN reduced the inflammatory cytokine levels (TNF-α and IL-6) in a concentration-dependent manner. EGFR silencing or FMN incubation decreased p-EGFR and p-p38 levels and down-regulated inflammatory cytokine levels in IL-1ß-stimulated cells or supernatants. Nevertheless, the effects of FMN on microglial inflammation were reversed by EGFR overexpression. In vivo, FMN treatment improved the neuromotor function, repaired tissue injury, and inhibited EGFR/p38MAPK phosphorylation. Formononetin inhibits microglial inflammatory response and contributes to SCI repair via the EGFR/p38MAPK signaling pathway.


Asunto(s)
Microglía , Traumatismos de la Médula Espinal , Humanos , Ratas , Animales , Microglía/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Inflamación/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/farmacología , Receptores ErbB/uso terapéutico , Citocinas/metabolismo
15.
Spine (Phila Pa 1976) ; 48(3): 213-222, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607628

RESUMEN

STUDY DESIGN: A functional, transcriptome, and long noncoding RNAs (lncRNAs) expression analysis in the spinal cord of mice after hyperbaric oxygen (HBO) treatment. OBJECTIVE: We aimed to explore the mechanism by which HBO treats spinal cord injury (SCI) at the level of lncRNAs. SUMMARY OF BACKGROUND DATA: Immense amounts of research have established that HBO treatment promotes the recovery of neurological function after SCI. The mechanism of action remains to be clarified. METHODS: High-throughput RNA sequencing, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were used to profile lncRNA expression and analyze biological function in the spinal cords of mice from sham-operated, SCI, and HBO-treated groups. The differential expression of lncRNA between the groups was assessed using real-time quantitative polymerase chain reaction. RESULTS: Differential expression across 577 lncRNAs was identified among the three groups. GO analysis showed that free ubiquitin chain polymerization, ubiquitin homeostasis, DNA replication, synthesis of RNA primer, single-stranded telomeric DNA binding, and alpha-amylase activity were significantly enriched. Kyoto Encyclopedia of Genes and Genomes enrichment analysis displayed that vitamin B6 metabolism, one carbon pool by folate, DNA replication, lysine degradation, beta-alanine metabolism, fanconi anemia pathway, and Notch signal pathway were the main pathways with enrichment significance. LncRNAs NONMMUT 092674.1, NONMMUT042986.2, and NONMMUT018850.2 showed significantly different expression between the SCI and the other two groups (P<0.05, <0.01). CONCLUSIONS: This study is the first to determine the expression profiles of lncRNAs in the injured spinal cord after HBO treatment. We identified several important dysregulated lncRNAs in this setting. These results help us better understand the mechanism by which HBO treats SCI and provide new potential therapeutic targets for SCI.


Asunto(s)
Oxigenoterapia Hiperbárica , ARN Largo no Codificante , Traumatismos de la Médula Espinal , Ratas , Ratones , Animales , Oxigenoterapia Hiperbárica/métodos , Oxígeno/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal , Ubiquitinas/genética , Ubiquitinas/metabolismo , Perfilación de la Expresión Génica
16.
CNS Neurosci Ther ; 29(4): 1094-1108, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36627822

RESUMEN

BACKGROUND: A growing body of research shows that drug monomers from traditional Chinese herbal medicines have antineuroinflammatory and neuroprotective effects that can significantly improve the recovery of motor function after spinal cord injury (SCI). Here, we explore the role and molecular mechanisms of Alpinetin on activating microglia-mediated neuroinflammation and neuronal apoptosis after SCI. METHODS: Stimulation of microglia with lipopolysaccharide (LPS) to simulate neuroinflammation models in vitro, the effect of Alpinetin on the release of pro-inflammatory mediators in LPS-induced microglia and its mechanism were detected. In addition, a co-culture system of microglia and neuronal cells was constructed to assess the effect of Alpinetin on activating microglia-mediated neuronal apoptosis. Finally, rat spinal cord injury models were used to study the effects on inflammation, neuronal apoptosis, axonal regeneration, and motor function recovery in Alpinetin. RESULTS: Alpinetin inhibits microglia-mediated neuroinflammation and activity of the JAK2/STAT3 pathway. Alpinetin can also reverse activated microglia-mediated reactive oxygen species (ROS) production and decrease of mitochondrial membrane potential (MMP) in PC12 neuronal cells. In addition, in vivo Alpinetin significantly inhibits the inflammatory response and neuronal apoptosis, improves axonal regeneration, and recovery of motor function. CONCLUSION: Alpinetin can be used to treat neurodegenerative diseases and is a novel drug candidate for the treatment of microglia-mediated neuroinflammation.


Asunto(s)
Flavonas , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal , Animales , Ratas , Apoptosis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Janus Quinasa 2/efectos de los fármacos , Janus Quinasa 2/metabolismo , Lipopolisacáridos , Microglía , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Ratas Sprague-Dawley , Transducción de Señal , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Flavonas/farmacología , Flavonas/uso terapéutico , Factor de Transcripción STAT3/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo
17.
J Chem Neuroanat ; 128: 102231, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36627061

RESUMEN

BACKGROUND: Oxidative stress, inflammation and cell apoptosis are the most important destructive factors in the spread of damage following trauma to the spinal cord. Therefore, presently, we investigated the synergistic effects of quercetin along with hyperbaric oxygen therapy (HBOT) as strong antioxidant, anti-inflammatory and anti-apoptotic compounds in the recovery of traumatic spinal cord injury (TSCI) in a rat model. MATERIAL AND METHODS: Seventy-five male mature Sprague-Dawley rats allocated into 5 groups, including: Sham group (SG), TSCI group, Quercetin group (underwent TSCI and received quercetin), HBOT group (underwent TSCI and received HBOT), and Quercetin+ HBOT group (underwent TSCI and received quercetin plus HBOT). Finally, the spinal cord samples at the traumatic site were harvested and various characteristics were evaluated, including the total volumes of the spinal cord and its central cavity as well as the numerical density of neuron and glial cells by stereological method, oxidant (malondialdehyde; MDA) and antioxidant (glutathione; GSH, superoxide dismutase; SOD and catalase; CAT) factors by biochemical method, molecular levels of IL-10, TNF-α and IL-1ß by qRT-PCR method, and cell apoptosis by immunohistochemistry method against Caspase-3 antibody. Furthermore, Basso-Beattie-Bresnahan (BBB) and electromyography latency (EMG Latency) tests were performed to evaluate neurological functions. RESULTS: Findings demonstrated that the stereological characteristics, biochemical factors (except MDA), expression of IL-10 gene and behavioral functions were significantly better in Quercetin, HBOT and Quercetin+HBOT groups than TSCI group, and were greater in Quercetin+HBOT ones (P < 0.05). While MDA levels, expression of TNF-α and IL-1ß genes as well as the density of apoptotic cells significantly more decreased in Quercetin+HBOT group compared to other treated groups (P < 0.05). CONCLUSION: Overall, co-administration of quercetin with HBOT has synergistic neuroprotective effects in animals underwent TSCI.


Asunto(s)
Oxigenoterapia Hiperbárica , Traumatismos de la Médula Espinal , Ratas , Masculino , Animales , Antioxidantes/farmacología , Quercetina/farmacología , Ratas Sprague-Dawley , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo
18.
J Neurotrauma ; 40(9-10): 820-832, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36503258

RESUMEN

L-arginine is a semi-essential amino acid involved in a variety of physiological processes in the central nervous system (CNS). It is essential in the survival and functionality of neuronal cells. Nonetheless, L-arginine also has a dark side; it potentiates neuroinflammation and nitric oxide (NO) production, leading to secondary damage. Therefore, modulating the L-arginine metabolism is challenging because both detrimental and beneficial effects are dependent on this semi-essential amino acid. After spinal cord injury (SCI), L-arginine plays a crucial role in trauma-induced neuroinflammation and regenerative processes via the two key enzymes: nitric oxide synthase (NOS) and arginase (ARG). Studies on L-arginine metabolism using ARG and NOS inhibitors highlighted the conflicting role of this semi-essential amino acid. Similarly, L-arginine supplementation resulted in both negative and positive outcomes after SCI. However, new data indicate that arginine depletion substantially improves spinal cord regeneration after injury. Here, we review the challenging characteristics of L-arginine metabolism as a therapeutic target after SCI.


Asunto(s)
Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal , Humanos , Arginina/metabolismo , Arginina/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa/farmacología , Sistema Nervioso Central/metabolismo , Médula Espinal
19.
Eur J Appl Physiol ; 123(3): 479-493, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36305973

RESUMEN

The purpose of the study was to identify potential predictors of muscle hypertrophy responsiveness following neuromuscular electrical stimulation resistance training (NMES-RT) in persons with chronic spinal cord injury (SCI). Data for twenty individuals with motor complete SCI who completed twice weekly NMES-RT lasting 12-16 weeks as part of their participation in one of two separate clinical trials were pooled and retrospectively analyzed. Magnetic resonance imaging (MRI) was used to measure muscle cross-sectional area (CSA) of the whole thigh and knee extensor muscle before and after NMES-RT. Muscle biopsies and fasting biomarkers were also measured. Following the completion of the respective NMES-RT trials, participants were classified into either high-responders (n = 8; muscle CSA > 20%) or low-responders (n = 12; muscle CSA < 20%) based on whole thigh muscle CSA hypertrophy. Whole thigh muscle and knee extensors CSAs were significantly greater (P < 0.0001) in high-responders (29 ± 7% and 47 ± 15%, respectively) compared to low-responders (12 ± 3% and 19 ± 6%, respectively). There were no differences in total caloric intake or macronutrient intake between groups. Extensor spasticity was lower in the high-responders compared to the low-responders as was the dosage of baclofen. Prior to the intervention, the high-responders had greater body mass compared to the low-responders with SCI (87.8 ± 13.7 vs. 70.4 ± 15.8 kg; P = 0.012), body mass index (BMI: 27.6 ± 2.7 vs. 22.9 ± 6.0 kg/m2; P = 0.04), as well as greater percentage in whole body and regional fat mass (P < 0.05). Furthermore, high-responders had a 69% greater increase (P = 0.086) in total Akt protein expression than low-responders. High-responders also exhibited reduced circulating IGF-1 with a concomitant increase in IGFBP-3. Exploratory analyses revealed upregulation of mRNAs for muscle hypertrophy markers [IRS-1, Akt, mTOR] and downregulation of protein degradation markers [myostatin, MurF-1, and PDK4] in the high-responders compared to low-responders. The findings indicate that body composition, spasticity, baclofen usage, and multiple signaling pathways (anabolic and catabolic) are involved in the differential muscle hypertrophy response to NMES-RT in persons with chronic SCI.


Asunto(s)
Terapia por Estimulación Eléctrica , Entrenamiento de Fuerza , Traumatismos de la Médula Espinal , Humanos , Baclofeno/metabolismo , Entrenamiento de Fuerza/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estudios Retrospectivos , Músculo Esquelético/fisiología , Espasticidad Muscular , Traumatismos de la Médula Espinal/metabolismo , Hipertrofia/patología , Terapia por Estimulación Eléctrica/métodos
20.
Cell Transplant ; 31: 9636897221133821, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36317711

RESUMEN

This study tested whether combined hyperbaric oxygen (HBO) and allogenic adipose-derived mesenchymal stem cells (ADMSCs) would be superior to either one for improving the locomotor recovery in rat after acute traumatic spinal cord injury (TSCI) in rat. Adult-male Sprague-Dawley rats were equally categorized into group 1 (sham-operated control), group 2 (TSCI), group 3 (TSCI + HBO for 1.5 h/day for 14 consecutive days after TSCI), group 4 (TSCI + ADMSCs/1.2 × 106 cells by intravenous injection at 3 h and days 1/2 after TSCI), and group 5 (TSCI + HBO + ADMSCs), euthanized, and spinal cord tissue was harvested by day 49 after TSCI. The protein expressions of oxidative-stress (NOX-1/NOX-2), inflammatory-signaling (TLR-4/MyD88/IL-1ß/TNF-α/substance-p), cell-stress signaling (PI3K/p-AKT/p-mTOR), and the voltage-gated sodium channel (Nav1.3/1.8/1.9) biomarkers were highest in group 2, lowest in group 1, and significantly lower in group 5 than in groups 3/4 (all P <0.0001), but they did not differ between groups 3 and 4. The spinal cord damaged area, the cellular levels of inflammatory/DNA-damaged biomarkers (CD68+/GFAP+/γ-H2AX+ cells), mitogen-activated protein kinase family biomarkers (p-P38/p-JNK/p-ERK1/2), and cellular expressions of voltage-gated sodium channel (Nav.1.3, Nav.1.8, and Nav.1.9 in NF200+ cells) as well as the pain-facilitated cellular expressions (p-P38+/peripherin+ cells, p-JNK+/peripherin+ cells, p-ERK/NF200+ cells) exhibited an identical pattern of inflammation, whereas the locomotor recovery displayed an opposite pattern of inflammation among the groups (all P < 0.0001). Combined HBO-ADMSCs therapy offered additional benefits for preserving the neurological architecture and facilitated the locomotor recovery against acute TSCI.


Asunto(s)
Oxigenoterapia Hiperbárica , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Animales , Ratas , Masculino , Ratas Sprague-Dawley , Periferinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Inflamación/terapia , Inflamación/metabolismo , Biomarcadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA